Loading

Hypochlorous acid

Hypochlorous acid
hypochlorous acid bonding
hypochlorous acid space filling
IUPAC name
Other names Hydrogen hypochlorite
Identifiers
CAS number 7790-92-3 Yes check.svgY
EC number 232-232-5
SMILES
Properties
Molecular formula HClO
Molar mass 52.46 g/mol
Appearance Colorless aqueous solns
Density Variable
Solubility in water Soluble
Acidity (pKa) 7.497[1]
Hazards
Main hazards Oxidizer
Related compounds
Related compounds Chlorine
Calcium hypochlorite
Sodium hypochlorite
 Yes check.svgY (what is this?)  (verify)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Hypochlorous acid is a weak acid with the chemical formula HClO. In the swimming pool industry, Hypochlorous acid is referred to as HOCl. It forms when chlorine dissolves in water. It cannot be isolated in pure form due to rapid equilibration with its precursor (see below). HOCl is used as a bleach, an oxidizer, a deodorant, and a disinfectant.

Formation

Addition of chlorine to water gives both hydrochloric acid (HCl) and hypochlorous acid[2]:

Cl2 + H2O \overrightarrow{\leftarrow} HClO + HCl

Production Using Electrolysis

Solutions of hypochlorites can be produced by electrolysis of an aqueous chloride solution. Chlorine gas is produced at the anode, while hydrogen forms at the cathode. Some of the chlorine gas produced will dissolve forming hypochlorite ions through the above reaction. The geometry of the cell is critical to ensure that as much of the chlorine as possible dissolves, rather than simply bubbling out of the cell.

At the anode: 2 Cl- ---> Cl2 (g) + 2e-

At the cathode: 2H+ + 2e- ---> H2 (g)

It can be seen that over time, the electrolyte will become increasingly basic.

There are a number of potential hazards and challenges associated with this process. It should not be attempted by untrained persons.

  • The electrochemical environment of the cell is highly corrosive, particularly at the anode. Few materials are suitable as an anode electrolyte. Graphite can be used, but will degrade quickly (which also results in contamination of the cell with finely divided carbon particles). Graphite supported lead dioxide electrodes have been reported to be more effective.
  • If the reaction conditions are not controlled, the produced hypochlorite can react with the hydroxide ions to form chlorate ions. These can additionally be electrochemically oxidized to perchlorate ions (within the same cell).
  • Hypochlorite is a powerful oxidizing agent, and will attack the dyes used in pH paper and damage pH sensors, making measurement and control of the conditions difficult.
  • Hydrogen gas is highly flammable, and can form explosive mixtures with both air and chlorine over a wide range of concentrations.
  • Chlorine gas is highly toxic and corrosive.

This is a section stub. See content suggestions.

Uses

In organic synthesis, HOCl converts alkenes to chlorohydrins.[3]

In biology, hypochlorous acid is generated in activated neutrophils by myeloperoxidase-mediated peroxidation of chloride ions, and contributes to the destruction of bacteria [4][5][6] and this is used in water treatment such as the acid being the active sanitizer in hypochlorite-based swimming pool products.

Chemical reactions

In aqueous solution, hypochlorous acid partially dissociates into the anion hypochlorite OCl-:

HClO\overrightarrow{\leftarrow} OCl- + H+

Salts of hypochlorous acid are also called hypochlorites. One of the best-known hypochlorites is NaClO, the active ingredient in bleach.

In the presence of sunlight, hypochlorous acid decomposes into hydrochloric acid and oxygen, so this reaction is sometimes seen as:

2Cl2 + 2H2O \overrightarrow{\leftarrow} 4HCl + O2

HClO is considered to be a stronger oxidant than chlorine.

HClO reacts with HCl to form chlorine gas:

HClO + HCl → H2O + Cl2

Reactivity of HClO with biomolecules

Hypochlorous acid reacts with a wide variety of biomolecules including DNA, RNA,[6][7][8][9] fatty acid groups, cholesterol[10][11][12][13][14][15][16][17] and proteins.[2][13][18][19][20][21][22]

Reaction with protein sulfhydryl groups

Knox et al.[20] first noted that HClO is a sulfhydryl inhibitor that, in sufficient quantity, could completely inactivate proteins containing sulfhydryl groups. This is because HClO oxidises sulfhydryl groups, leading to the formation of disulfide bonds[23] that can result in crosslinking of proteins. The HClO mechanism of sulfhydryl oxidation is similar to that of chloramine, and may only be bacteriostatic, because, once the residual chlorine is dissipated, some sulfhydryl function can be restored.[19] One sulfhydryl-containing amino acid can scavenge up to four molecules of HOCl.[22] Consistent with this, it has been proposed that sulfhydryl groups of sulfur-containing amino acids can be oxidized a total of three times by three HClO molecules, with the fourth reacting with the α-amino group. The first reaction yields sulfenic acid (R-SOH) then sulfinic acid (R-SO2H) and finally R-SO3H. Each of those intermediates can also condense with another sulfhydryl group, causing cross-linking and aggregation of proteins. Sulfinic acid and R-SO3H derivatives are produced only at high molar excesses of HClO, and disulfides are formed primarily at bacteriocidal levels.[9] Disulfide bonds can also be oxidized by HClO to sulfinic acid.[23] Because the oxidation of sulfhydryls and disulfides evolves hydrochloric acid,[9] this process results in the depletion HClO.

Reaction with protein amino groups

Hypochlorous acid reacts readily with amino acids that have amino group side-chains, with the chlorine from HClO displacing a hydrogen, resulting in an organic chloramine.[24] Chlorinated amino acids rapidly decompose, but protein chloramines are longer-lived and retain some oxidative capacity.[5][22] Thomas et al.[5] concluded from their results that most organic chloramines decayed by internal rearrangement and that fewer available NH2 groups promoted attack on the peptide bond, resulting in cleavage of the protein. McKenna and Davies[25] found that 10 mM or greater HClO is necessary to fragment proteins in vivo. Consistent with these results, it was later proposed that the chloramine undergoes a molecular rearrangement, releasing HCl and ammonia to form an amide.[26] The amide group can further react with another amino group to form a Schiff base, causing cross-linking and aggregation of proteins.[13]

Reaction with DNA and Nucleotides

Hypochlourous acid reacts slowly with DNA and RNA as well as all nucleotides in vitro.[7][27] GMP is the most reactive because HClO reacts with both the heterocyclic NH group and the amino group. In similar manner, TMP with only a heterocyclic NH group that is reactive with HClO is the second-most reactive. AMP and CMP, which have only a slowly reactive amino group are less reactive with HClO.[27] UMP has been reported to be reactive only at a very slow rate.[6][7] The heterocyclic NH groups are more reactive than amino groups, and their secondary chloramines are able to donate the chlorine.[9] These reactions likely interfere with DNA base pairing, and, consistent with this, Prütz[27] has reported a decrease in viscosity of DNA exposed to HClO similar to that seen with heat denaturation. The sugar moieties are unreactive and the DNA backbone is not broken.[27] NADH can react with chlorinated TMP and UMP as well as HClO. This reaction can regenerate UMP and TMP and results in the 5-hydroxy derivative of NADH. The reaction with TMP or UMP is slowly reversible to regenerate HClO. A second slower reaction that results in cleavage of the pyridine ring occurs when excess HClO is present. NAD+ is inert to HClO.[9][27]

Reaction with lipids

Hypochlorous acid reacts with unsaturated bonds in lipids, but not saturated bonds, and the OCl ion does not participate in this reaction. This reaction occurs by hydrolysis with addition of chlorine to one of the carbons and a hydroxyl to the other. The resulting compound is a chlorhydrin.[10] The polar chlorine disrupts lipid bilayers and could increase permeability.[11] When chlorhydrin formation occurs in lipid bilayers of red blood cells, increased permeability occurs. Disruption could occur if enough chlorhydrin is formed.[10][16] The addition of preformed chlorhydrins to red blood cells can affect permeability as well.[12] Cholesterol chlorhydrins have also been observed,[11][14] but do not greatly affect permeability, and it is believed that Cl2 is responsible for this reaction.[14]

Mode of disinfectant action

Escherichia coli exposed to hypochlorous acid lose viability in less than 100 ms due to inactivation of many vital systems.[2][28][29][30][31] Hypochlorous acid has a reported LD50 of 0.0104 ppm - 0.156 ppm[32] and 2.6 ppm caused 100% growth inhibition in 5 minutes.[25] However it should be noted that the concentration required for bactericidal activity is also highly dependent on bacterial concentration.[20]

Inhibition of glucose oxidation

In 1948, Knox et al.[20] proposed the idea that inhibition of glucose oxidation is a major factor in the bacteriocidal nature of chlorine solutions. He proposed that the active agent or agents diffuse across the cytoplasmic membrane to inactivate key sulfhydryl-containing enzymes in the glycolytic pathway. This group was also the first to note that chlorine solutions (HOCl) inhibit sulfhydryl enzymes. Later studies have shown that, at bacteriocidal levels, the cytosol components do not react with HOCl.[1] In agreement with this, McFeters and Camper[33] found that aldolase, an enzyme that Knox et al.[20] proposes would be inactivated, was unaffected by HOCl in vivo. It has been further shown that loss of sulfhydryls does not correlate with inactivation.[19] That leaves the question concerning what causes inhibition of glucose oxidation. The discovery that HOCl blocks induction of β-galactosidase by added lactose[34] led to a possible answer to this question. The uptake of radiolabeled substrates by both ATP hydrolysis and proton co-transport may be blocked by exposure to HOCl preceding loss of viability.[1] From this observation, it proposed that HOCl blocks uptake of nutrients by inactivating transport proteins.[1][18][33][35] The question of loss of glucose oxidation has been further explored in terms of loss of respiration. Venkobachar et al.[36] found that succinic dehydrogenase was inhibited in vitro by HOCl, which led to the investigation of the possibility that disruption of electron transport could be the cause of bacterial inactivation. Albrich et al.[6] subsequently found that HOCl destroys cytochromes and iron-sulfur clusters and observed that oxygen uptake is abolished by HOCl and adenine nucleotides are lost. Also observed was, that irreversible oxidation of cytochromes paralleled the loss of respiratory activity. One way of addressing the loss of oxygen uptake was by studying the effects of HOCl on succinate dependent electron transport.[37] Rosen et al.[31] found that levels of reductable cytochromes in HOCl-treated cells were normal, and these cells were unable to reduce them. Succinate dehydrogenase was also inhibited by HOCl, stopping the flow of electrons to oxygen. Later studies[29] revealed that Ubiquinol oxidase activity ceases first, and the still-active cytochromes reduce the remaining quinone. The cytochromes then pass the electrons to oxygen, which explains why the cytochromes cannot be reoxidized, as observed by Rosen et al.[31] However, this line of inquiry was ended when Albrich et al.[2] found that cellular inactivation precedes loss of respiration by using a flow mixing system that allowed evaluation of viability on much smaller time scales. This group found that cells capable of respiring could not divide after exposure to HOCl.

Depletion of adenine nucleotides

Having eliminated loss of respiration Albrich et al.[2] proposes that the cause of death may be due to metabolic dysfunction caused by depletion of adenine nucleotides. Barrette et al.[34] studied the loss of adenine nucleotides by studying the energy charge of HOCl-exposed cells and found that cells exposed to HOCl were unable to step up their energy charge after addition of nutrients. The conclusion was that exposed cells have lost the ability to regulate their adenylate pool, based on the fact that metabolite uptake was only 45% deficient after exposure to HOCl and the observation that HOCl causes intracellular ATP hydrolysis. Also confirmed was that, at bacteriocidal levels of HOCl, cytosolic components are unaffected. So it was proposed that modification of some membrane-bound protein results in extensive ATP hydrolysis, and this, coupled with the cells inability to remove AMP from the cytosol, depresses metabolic function. One protein involved in loss of ability to regenerate ATP has been found to be ATP synthetase.[18] Much of this research on respiration reconfirms the observation that relevant bacteriocidal reactions take place at the cell membrane.[18][34][38]

Inhibition of DNA replication

Recently it has been proposed that bacterial inactivation by HOCl is the result of inhibition of DNA replication. When bacteria are exposed to HOCl, there is a precipitous decline in DNA synthesis that precedes inhibition of protein synthesis, and closely parallels loss of viability.[25][39] During bacterial genome replication, the origin of replication (oriC in E. coli) binds to proteins that are associated with the cell membrane, and it was observed that HOCl treatment decreases the affinity of extracted membranes for oriC, and this decreased affinity also parallels loss of viability. A study by Rosen et al.[40] compared the rate of HOCl inhibition of DNA replication of plasmids with different replication origins and found that certain plasmids exhibited a delay in the inhibition of replication when compared to plasmids containing oriC. Rosen’s group proposed that inactivation of membrane proteins involved in DNA replication are the mechanism of action of HOCl.

Protein Unfolding and Aggregation

HOCl is known to cause post-translational modifications to proteins, notably cysteine and methionine oxidation. A recent examination of HOCl's bactericidal role revealed it to be a potent inducer of protein aggregation.[41] Hsp33, a chaperone known to be activated by oxidative heat stress, protects bacteria from the effects of HOCl by acting as a holdase, effectively preventing protein aggregation. Strains of E. coli and Vibrio cholerae lacking Hsp33 were rendered especially sensitive to HOCl. Hsp33 protected many essential proteins from aggregation and inactivation due to HOCl, which is a probable mediator of HOCl's bactericidal effects.

Safety

HOCl is a strong oxidizer and can form explosive mixtures.

External links

References

  1. ^ a b c d Morris, J. C. (1966), "The acid ionization constant of HClO from 5 to 35 °", J. Phys. Chem. 70: 3798–3805 
  2. ^ a b c d e Fair, G. M., J. Corris, S. L. Chang, I. Weil, and R. P. Burden. 1948. The behavior of chlorine as a water disinfectant. J. Am. Water Works Assoc. 40:1051-1061.
  3. ^ Unangst, P. C. "Hypochlorous Acid" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. DOI: 10.1002/047084289.
  4. ^ Harrison, J. E., and J. Schultz. 1976. Studies on the chlorinating activity of myeloperoxidase. Journal of Biological Chemistry volume 251, pages1371-1374.
  5. ^ a b c Thomas, E. L. 1979. Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: Nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli. Infect. Immun. 23:522-531.
  6. ^ a b c d Albrich, J. M., C. A. McCarthy, and J. K. Hurst. 1981. Biological reactivity of hypochlorous acid: Implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc. Natl. Acad. Sci. USA 78:210-214.
  7. ^ a b c Dennis, W. H., Jr, V. P. Olivieri, and C. W. Krusé. 1979. The reaction of nucleotides with aqueous hypochlorous acid. Water Res. 13:357-362.
  8. ^ Jacangelo, J. G., and V. P. Olivieri. 1984. Aspects of the mode of action of monochloramine. In R. L. Jolley, R. J. Bull, W. P. Davis, S. Katz, M. H. Roberts, Jr., and V. A. Jacobs (ed.), Water Chlorination, vol. 5. Lewis Publishers, Inc., Williamsburg.
  9. ^ a b c d e Prütz, W. A. 1998. Interactions of hypochlorous acid with pyrimidine nucleotides, and secondary reactions of chlorinated pyrimidines with GSH, NADPH, and other substrates. Arch. Biochem. Biophys. 349:183-191.
  10. ^ a b c Arnhold, J., O. M. Panasenko, J. Schiller, Y. A. Vladimirov, and K. Arnold. 1995. The action of hypochlorous acid on phosphatidylcholine liposomes in dependence on the content of double bonds. Stoichiometry and NMR analysis. Chem. Phys. Lipids 78:55-64.
  11. ^ a b c Carr, A. C., J. V. D. Berg, and C. C. Winterbourn. 1996. Chlorination of cholesterol in cell membranes by hypochlorous acid. Arch. Biochem. Biophys. 332:63-69.
  12. ^ a b Domigan, N. M., M. C. M. Vissers, and C. C. Winterbourn. 1997. Modification of red cell membrane lipids by hypochlorous acid and haemolysis by preformed lipid chlorhydrins. Redox Rep. 3:263-271.
  13. ^ a b c Hazell, L. J., J. V. D. Berg, and R. Stocker. 1994. Oxidation of low density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than lipid oxidation. Biochem. J. 302:297-304.
  14. ^ a b c Hazen, S. L., F. F. Hsu, K. Duffin, and J. W. Heinicke. 1996. Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols. J. Biol. Chem. 271:23080-23088.
  15. ^ Vissers, M. C. M., A. C. Carr, and A. L. P. Chapman. 1998. Comparison of human red cell lysis by hypochlorous acid and hypobromous acids: insights into the mechanism. Biochem. J. 330:131-138.
  16. ^ a b Vissers, M. C. M., A. Stern, F. Kuypers, J. V. D. Berg, and C. C. Winterbourn. 1994. Membrane changes associated with lysis of red blood cells by hypochlorous acid. Free Rad. Biol. Med. 16:703-712.
  17. ^ Winterbourne, C. C., J. V. D. Berg, E. Roitman, and F. A. Kuypers. 1992. Chlorhydrin formation from unsaturated fatty acids reacted with hypochlorous acid. Arch. Biochem. Biophys. 296:547-555.
  18. ^ a b c d Barrette, W. C., Jr., D. M. Hannum, W. D. Wheeler, and J. K. Hurst. 1989. General mechanism for the bacterial toxicity of hypochlorous acid: Abolition of ATP production. Biochemistry 28:9172-9178.
  19. ^ a b c Jacangelo, J. G., V. P. Olivieri, and K. Kawata. 1987. Oxidation of sulfhydryl groups by monochloramine. Water Res. 21:1339-1344.
  20. ^ a b c d e Knox, W. E., P. K. Stumpf, D. E. Green, and V. H. Auerbach. 1948. The inhibition of sulfhydryl enzymes as the basis of the bactericidal action of chlorine. J. Bacteriol. 55:451-458.
  21. ^ Vissers, M. C. M., and C. C. Winterbourne. 1991. Oxidative Damage to Fibronectin. Arch. Biochem. Biophys. 285:53-59.
  22. ^ a b c Winterbourne, C. C. 1985. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity to the oxidant to hypochlorite. Biochim. Biophys. Acta 840:204-210.
  23. ^ a b Pereira, W. E., Y. Hoyano, R. E. Summons, V. A. Bacon, and A. M. Duffield. 1973. Chlorination studies: II. The reaction of aqueous hypochlorous acid with a - amino acids and dipeptides. Biochim. Biophys. Acta 313:170-180.
  24. ^ Dychdala, G. R. 1991. Chlorine and chlorine compounds, p. 131-151. In S. S. Block (ed.), Disinfection, Sterilization and Preservation. Lea & Febiger, Philadelphia.
  25. ^ a b c McKenna, S. M., and K. J. A. Davies. 1988. The inhibition of bacterial growth by hypochlorous acid: possible role in the bactericidal activity of phagocytes. Biochem. J. 254:685-692.
  26. ^ Hazen, S. L., A. d'Avignon, M. M. Anderson, F. F. Hsu, and J. W. Heinicke. 1998. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to oxidize α-amino acids to a family of reactive aldehydes. J. Biol. Chem. 273:4997-5005.
  27. ^ a b c d e Prütz, W. A. 1996. Hypochlorous acid interactions with thiols, nucleotides, DNA and other biological substrates. Arch. Biochem. Biophys. 332:110-120.
  28. ^ Rakita, R. M., B. R. Michel, and H. Rosen. 1990. Differential inactivation of Escherichia coli membrane dehydrogenases by a myeloperoxidase-mediated antimicrobial system. Biochemistry 29:1075-1080.
  29. ^ a b Rakita, R. M., B. R. Michel, and H. Rosen. 1989. Myeloperoxidase-mediated inhibition of microbial respiration: Damage to Escherichia coli ubiquinol oxidase. Biochemistry 28:3031-3036.
  30. ^ Rosen, H., and S. J. Klebanoff. 1985. Oxidation of microbial iron-sulfur centers by the myeloperoxidase-H2O2-halide antimicrobial system. Infect. Immun. 47:613-618.
  31. ^ a b c Rosen, H., R. M. Rakita, A. M. Waltersdorph, and S. J. Klebanoff. 1987. Myeloperoxidase-mediated damage to the succinate oxidase system of Escherichia coli. J. Biol. Chem. 242:15004-15010.
  32. ^ Chesney, J. A., J. W. Eaton, and J. R. Mahoney, Jr. 1996. Bacterial glutathione: a sacrificial defense against chlorine compounds. J. Bacteriol. 178:2131-2135.
  33. ^ a b McFeters, G. A., and A. K. Camper. 1983. Enumeration of indicator bacteria exposed to chlorine. Adv. Appl. Microbiol. 29:177-193.
  34. ^ a b c Barrette, W. C., Jr., J. M. Albrich, and J. K. Hurst. 1987. Hypochlorous acid-promoted loss of metabolic energy in Escherichia coli. Infect. Immun. 55:2518-2525.
  35. ^ Camper, A. K., and G. A. McFeters. 1979. Chlorine injury and the enumeration of waterborne coliform bacteria. Appl. Environ. Microbiol. 37:633-641.
  36. ^ Venkobachar, C., L. Iyengar, and A. V. S. P. Rao. 1975. Mechanism of disinfection. Water Res. 9:119-124.
  37. ^ Hurst, J. L., W. C. Barrette, Jr., B. R. Michel, and H. Rosen. 1991. Hypochlorous acid and myeloperoxidase-catalyzed oxidation of iron-sulfur clusters in bacterial respiratory dehydrogenases. Eur. J. Biochem. 202:1275-1282.
  38. ^ Rosen, H., and S. J. Klebanoff. 1982. Oxidation of Escherichia coli iron centers by myeloperoxidase-mediated microbicidal system. J. Biol. Chem. 257:13731-13735
  39. ^ Rosen, H., J. Orman, R. M. Rakita, B. R. Michel, and D. R. VanDevanter. 1990. Loss of DNA-membrane interactions and cessation of DNA synthesis in myeloperoxidase-treated Escherichia coli. Proc. Natl. Acad. Sci. USA 87:10048-10052.
  40. ^ Rosen, H., B. R. Michel, D. R. vanDevanter, and J. P. Hughes. 1998. Differential effects of myeloperoxidase-derived oxidants on Escherichia coli DNA replication. Infect. Immun. 66:2655-2659.
  41. ^ J. Winter, M. Ilbert, P.C.F. Graf, D. Ozcelik, U. Jakob. 2008. Bleach Activates a Redox-Regulated Chaperone by Oxidative Protein Folding. Cell 135:691-701.

 

The content of this section is licensed under the GNU Free Documentation License (local copy). It uses material from the Wikipedia article "Hypochlorous acid" modified October 23, 2009 with previous authors listed in its history.